Data Moiré: Optical Patterns as Data-Driven Design Narratives

Alvin Huang, AIA
Associate Professor, USC School of Architecture
Founder and Design Principal, Synthesis Design + Architecture

Anna M. Chaney
IBM Watson: Advanced Cognitive Technology & Solutions

ABSTRACT
Big Data (data sets so complex or expansive where conventional data processing is insufficient) has continually had a big impact. It is affecting the worlds of commerce, media, and design, amongst many others, and more recently, it is becoming an industry in itself. This paper documents the research and design process of Data Moiré, a large-scale feature wall designed and installed for the IBM Watson Experience Center in San Francisco, California. The project merges the territories of “data spatialization” and “data narrative” by using the cognitive computing capabilities of IBM Watson to inform a data-driven generative design process. The result is a digitally-fabricated physical installation that illustrates monthly spending cycles by mapping the growing influence of mobile devices on all digital sales from 2013–2015. The data is materialized as a CNC-milled, double-layered aluminum, back-lit screen wall, producing a moiré-like effect through abstract visual interference patterns generated by the overlaying of two mappings of the same data set.

The resultant project is simultaneously an abstract representation of Big Data that offers a uniquely spatial marketing narrative, as well as a dynamic architectural feature with a visual experience that is amplified through the movement of visitors through the Experience Center. The paper reviews initial research and data mining, digital mapping and visualization studies, and the development of tectonic including spatial logics which have proved effective both representationally and atmospherically.

1. INTRODUCTION
Big Data (data sets so complex or expansive that conventional data processing is insufficient) has continually had a big impact. It is affecting the worlds of commerce, media, and design, amongst many others, and more recently, it is becoming an industry in itself. IBM Analytics has emerged as the leading commercial technology platform for uncovering insights into large quantities of highly-curated unstructured data.

Similarly, recent conversations in architectural discourse have theorized on the emergence of data-driven design as a paradigm shift, one that leverages computation in using the expansiveness of Big Data to conceive of an architecture that is understood as the registration of “reality as it appears at any chosen scale, without having
to convert it into simplified and scalable mathematical notions or laws (Carpo 2014). The term “data spatialization” has emerged to describe novel architectural materializations that utilize computational design processes to generate novel architectural expressions and spatial opportunities informed by Big Data (Marsico 2015).

In parallel, the media world has witnessed the emergence of a new form of storytelling called “Data Narrative,” whereby the crafting of stories happens through the collection and analysis of new or existing sets of Big Data. These data stories utilize data visualizations embedded within narrative components to produce a form of narrative visualization that tells a story through the analysis of data (Segel and Heer 2013).

Data Monet is a large-scale, data-driven feature wall that merges the territories of data spatialization and data narrative. It uses the cognitive computing capabilities of IBM Watson to inform a data-driven generative design process to articulate a vast quantity of data as a spatial experience and marketing narrative for the IBM Watson Experience Center in San Francisco, California.

The result is a digitally fabricated physical installation that illustrates monthly spending cycles by mapping the growing influence of mobile devices on all digital sales from 2013–2015. The data is materialized as a CNC-milled, double layered aluminum back-lit screen wall that produces a more-like-effect through abstract visual interference patterns produced by the overlaying of two mappings of the same dataset. This screen wall is used as the cladding for the Watson Immersion Room (Fig. 1). The result is a dynamic architectural feature that provides identity and enhances the visual and spatial experience of visitors to the Watson Experience Center, while simultaneously providing a uniquely spatial marketing narrative that highlights Watson’s ability to analyze large quantities of unstructured data.

2 PRECEDENTS
Several important precedents were referenced and studied to inform the research, design, and development of the project. Many examples were studied and explored, in the field of data visualization, and in particular, the precedent of highest importance was the “Centennial Chronogram,” by Adam Marcus/Variable Projects. This large-scale installation not only extends the trajectory of data visualization toward data spatialization by physically representing statistical data spanning 100 years in the institutional history of the University of Minnesota School of Architecture, but it also focuses on the abstraction of the data as a means of producing atmospheric effects. Additionally, the work of British Op Artist Bridget Riley was further referenced, specifically her studies of variable, non-repetitive two-dimensional patterns that give the illusion of three-dimensional depth and movement.

3 DESIGNING DATA
In an effort to showcase the capabilities of their cognitive computing services, IBM is launching a series of showrooms known as Watson Experience Centers (WEC), with each center focused on a particular commercial market. Current centers exist in New York City and Cambridge, with our project located in the San Francisco WEC and focusing on the retail and commerce industries. The focal point of each WEC is the Immersion Room, an immersive media space where clients of IBM can experience Watson technologies as a visually stunning computer environment. Each WEC Immersion Room is a small circular room floating within an open floor plan. We were commissioned to design the custom exterior cladding for the San Francisco Immersion Room. The brief provided by IBM was simple: to design a custom wall, with a maximum depth of six inches, that would provide a unique identity for the center.

In response to the brief, we proposed a collaborative design approach that challenged IBM to utilize Watson’s cognitive computing capabilities to provide us with relevant data analysis to drive our future design process. The intent was to consider the feature wall as a physical representation abstracted from a chronological set of Big Data that on its own provided an iconic identifier for the center. However, when the wall is experienced as part of a guided tour and explained by a docent, the skin could be utilized as the physical manifestation of narrative visualization, thus providing a powerful analytical, creative, and narrative tool in revealing new ways of comprehending, navigating, and experiencing information (Schneider 2016). To achieve this task, IBM chose a data set that would express the changing face of e-commerce, and the growing influence of mobile devices on all digital sales.

3.1 Collecting Data
IBM Digital Analytics Benchmark delivers aggregated and anonymous competitive website data. The data is collected by measuring every single interaction on every single participating site, capturing comprehensive behavioral data. For our project, we wanted to express the growing power of mobile devices in digital purchases, and we chose the following data series from the Benchmark data:

- Daily average order value in USD
- Daily mobile sessions as a percent of sales
- Daily total number of orders

The data for each of these series was sampled for 123 weeks, from Wednesday, August 21, 2013, through Tuesday, December 29, 2015.

3.2 Translating Data
Data translation was a three-step process:

1. Correlate the three daily series into one metric that expressed the strength of mobile devices on digital sales.
2. Transform the data into a two-dimensional pattern.
3. Interpolate the series to the dimensions of the show wall.

The data that needed to be combined are of very different scales, and can be combined using the simple transformation:

\[y = \text{daily total order value} \times 0.05 \]

To find trends in the four data series, we organize the data set into a 7 x 123 matrix, where the rows are days of the week, and the columns are weeks, like so:

Table: Day of Week, Alignment for Total Order Value on Mobile Devices

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monday</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wednesday</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thursday</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friday</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturday</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sunday</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Using the guide from this table, we then create a surface using the position in the matrix as the (x,y) coordinate, and the form value at that day as the z coordinate (Fig. 2). Now, there are several interesting patterns that have started to appear in the data. We see three specific weeks that stand out from the rest of the data set at lateral peaks. These are the weeks containing Thanksgiving, Black Friday, and Cyber Monday. The other pattern visible is a stronger mobile usage for digital commerce on the weekends, as opposed to the weekdays, which reads as a longitudinal intensity across the length of the pattern.

At this point the raw data pattern has two problems:

1. The skin has an aspect ratio of 30 x 280, while the data set has an aspect ratio of 123 x 7.
2. The legibility of the data set is hard to interpret with the hard peaks and jagged edges.

To solve these problems, we resample the surface on the finer using cubic spline interpolation to find the new data points. This solves both size and clarity issues for
the pattern (fig. 3). Now, the data set for the whole skin can be seen in Figure 4, looking down on the surface and visualizing the z-height as a heat map.

4 DESIGNING FROM DATA

This raw quantitative data was provided to the design team as a three-dimensional data surface produced in the multi-paradigm numerical computing environment MATLAB to illustrate the distribution of digital sales as a chronological continuum of peaks and valleys. The next challenge was to materialize the varying intensities of this three-dimensional data within a six-inch depth. In order to achieve this, it was decided to translate the three-dimensional data surface through the Grasshopper parametric modeling platform as a two-dimensional geometric pattern that could be CNC-milled or laser-cut out of flat sheet metal material to be assembled as a back-lit feature wall. This strategy would allow the three-dimensional data to be compacted to fit within the constraints of the six-inch wall cavity we were provided.

In addition to the physical constraints of depth, we were interested in the ability of geometric patterns to do two things:
1. Adapt their autonomous internal logics to heterogeneous external forces without losing either their organizational or aesthetic identity (Andersen and Salomon 2006).
2. Provide the illusion of depth and motion through variable patterning organizations that produce vivid dynamic illusions that trigger involuntary eye movements (Zanker 2004).

With the previously described design characteristics in mind, a series of design objectives were established as patterning criteria:
1. The materialization should be a two-dimensional pattern that had the legibility of the three-dimensional data surface.
2. The pattern should abstractly express, rather than be a literal representation of, the varying intensities (peaks and valleys) of the data surface.
3. The pattern should provide a dynamic visual experience that would both encourage visitors to walk around the Immersion Room and appear to be different from each and every vantage point.

4. The pattern should be integrated with all structural requirements. Based on the established design criteria, a number of explorations were produced to test various patterning techniques and materialization options for the conversion of the three-dimensional data surface (fig. 5). Following these explorations, a design pattern was selected for further development.

4.1 Patterns From Data

In the tradition of architectural representation, a three-dimensional surface is best described as a two-dimensional topographical map. In our instance, by sampling the topographical contours of our data surface as a series of evenly distributed points along the length of each curve, that topographical map is translated twice: once as a Voronoi diagram that defines a series of polygonal cells around each point, and once as a Delaunay diagram that defines each point as a node within a network of connections (fig. 6).

This translation abstracts the original data surface into two opposing diagrams of solid (the presence of material) and void (the absence of material), each of which is organized to express the varying intensities of amplitude and curvature that are embedded within the original surface, while maintaining a two-dimensional materiality. While the Voronoi diagram creates an arrangement of cellular voids divided by the perpendicular midpoints of their adjacent cells, the Delaunay
takes those same points and creates a network of lines
connected by them. When overlaid one on top of the
other (figs. 7 and 8), the two patterns work collectively
to produce a third emergent pattern—one which produces
a dynamic visual effect akin to that of a moiré pattern.
This visual effect capitalizes on the ability of the moiré
to produce an illusion of motion and depth that dynam-
ically engages a viewer and encourages visual interac-
tions through the skin that are exponentially amplified
by the viewer’s position in space and the variable readings
enabled by the alignments, misalignments, and interfer-
ence patterns produced through the spacing of the two
overlaid patterns (Wade 2016).

4.2 Build-a-ility vs. Legibility
The further development of the project required multiple
rounds of refinement to the pattern to balance a number
of fabrication and assembly criteria (build-a-ility of the
installation) against a series of design criteria (legibility
of the data within the pattern). Whereas the organization,
density, and porosity of the pattern had to be adjusted
to contend with the integration of anchor points to the
substrate, structural integrity of the individual panels,
and visibility of light sources, it was critical not to lose
the legibility of the varying intensities within the pattern.
In particular, it was key that the dates of Thanksgiving,
Black Friday, and Cyber Monday were identifiable as the abso-
lute peaks of intensity within the pattern.
Adjustments were made to the pattern to subtly shift
the organization of the pattern to contend with structural
anchor points, reduce the density of perforations to
maintain structural integrity, and incorporate a created
gradient fall-off condition at the outer edges to conceal
the visibility of light sources.

4.3 Fabrication & Finish
The entire assembly is digitally fabricated. The outer
layer is CNC-milled out of 0.06-inch cold-rolled aluminum
sheet with a silver sparkle powder coat. The inner layer
is laser-cut out of 20-gauge steel with a gun-metal PVD
coating (fig. 9). The thicker sheet material on the outer layer enables the sheet to be cold-rolled to an accurate radius
to ensure visual continuity between the individual panels,
but requires a more expensive process of CNC milling.
The thinner sheet material on the inner surface allows a
more economical laser cutting process and the ability to
blend the sheets to fit on site (while not being concerned
about visual continuity since the inner layer is covered),
thus further reducing costs. The powder-coated finish on
the outer layer enables a durable and easy-to-maintain
surface condition, while the PVD-coated finish of the inner
layer provides for a highly reflective surface condition that
is shielded from fingerprints by the outer layer (fig. 10).

5 BIG DATA, DESIGN SPATIALIZATION, & DESIGN NARRATIVE
While the project is driven by data, the legibility of that
data is abstract rather than literal. Instead of a statistical
or analytical reading of the data, the project provides a
spatial and atmospheric reading that enhances the expe-
rience of visitors to the center and encourages them
to engage spatially (fig. 11). It is only through the
guided tour of a docent that the legibility of this data is
c newed through a verbal narrative. That oral explana-
tion activates the skin to act as more than a narrative
visualisation—it becomes a narrative spatialisation that
not only illustrates the findings of the data that produced
it (the chronological metrics of e-commerce affected by
mobile sales), but also highlights the technology that
produced it (the cognitive computing of IBM).

6 CONCLUSION
The data visualisation focuses on beauty, seen as a kind
of aesthetic engagement with big data, a form of knowl-
edge encounter that turns on the complexity and aura of
an unimaginable object.
—McCloskey and Wilken (2014)

Data Moiré capitalizes on two computational para-
digms: the capacity of cognitive computing and machine
learning to analyze and provide insights into massive
amounts of unstructured data, and the ability of gen-
erative design processes to drive geometries that are
informed by data. However, it is not the analysis nor
the geometries themselves that are the impactful products
of this project, but rather the capacity of the analysis
and the geometry combined that are able to communicate.

7 REFERENCES
Andersen, Paul and David Salomon. “The Pattern That
Connects.” In ACADIA 2010 LIFE in formation. On
Responsive Information and Variations in Architecture:
Proceedings of the 30th Annual Conference of the
Association for Computer Aided Design in Architecture,
edited by Aaron Sprecher, Shai Yehyayahu, and Pablo

Carpo, Mario. “Breaking the Curve: Big Data and Design.”
Artforum International 52, no. 6 (2014): 168–73.

Marcus, Adam. “Centennial Chromograph: Data Spati-
alization and Computational Craft.” In ACADIA 2014
Design Agency: Proceedings of the 34th Annual Con-
ference of the Association for Computer Aided Design in
Architecture, edited by David Gerber and Alvin Huang.

McCloskey, Anthony, and Roxan Wilken. “Rethinking ‘Big
Data’ as Visual Knowledge: The Sublime and the Dia-
grammatic in Data Visualisation.” Visual Studies 29,

Schneider, Ann Marie. “Experiencing information.” Ketsi:

Segel, Edward, and Jeffrey Heer. “Narrative Visualization:
Telling Stories With Data.” Visualization and Com-
puter Graphics, IEEE Transactions on Visualization

Wade, Nicholas. “Moiré and Motion.” In Art and Illusion-

Zanker, Johannes M. “Looking at Op Art From a
Computational Viewpoint.” Spatial Vision 17, no. 1